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ABSTRACT: 
 

Description of roofs in urban environments by their geometry and material is a basic feature for budgeting toxic water runoff. This 

e.g. allows to quantify pollution and the necessary dimension of sewage plants.  

 

An automatic procedure to determine the roof parameters has been jointly developed by geodesists and water chemistry experts 

from Karlsruhe University. Input data are hyperspectral images together with airborne laserscanning data. Image segmentation and 

classification use mainly the object-oriented eCognition approach. The procedure was tested at the Karlsruhe University Campus as 

a pilot area. For five main roof surface classes (brick, copper, aluminium/zinc, slate and stonelike/bitumen) the obtained absolute 

accuracy is better than 90 %. 

 

 

1. 1. INTRODUCTION 

The ongoing dynamic development of sensor technology 

leads to completely new opportunities and applications in 

the GIS domain: This confirms the technological law that 

new tools should not focus on existing products, but must 

necessarily lead to new ones. In this context, the paper 

presents a new opportunity offered by fusion of high 

resolution sensors, i.e. laserscanning on the one hand and 

hyperspectral imagery on the other. Both feature high-

resolution: laser scanning with respect to its geometrical 

resolution and hyperspectral imagery with respect to its 

inherent spectral resolution in terms of the number of 

narrow bands represented.  

 

The new opportunity given here is the description of roof 

surfaces by dimension and material in order to quantify 

polluted runoff water. Roofs in urban area had already 

played a role for 3D City models however limited to 

geometry (cf. Baltsavias and Grün, 2001). The analysis 

for pollution of runoff water is a new challenge. 

Functionality of roof surfaces has been neglected so far 

for both their negative and positive impact. While a 

negative side is presented in the following investigation, 

a positive side would be the use of roof surfaces for 

photovoltaic mini power plant assembly. 

 

 

2. BACKGROUND OF THE INVESTIGATION 

Laser scanning and hyperspectral data are often used 

exclusively, either to derive the geometry based on laser 

scanning data (cf. [2]) or to derive material maps based 

on hyperspectral data (cf. [1]). [3] use hyperspectral data 

(AVIRIS) in order to improve reconstruction results 

based on IFSAR, namely to mask vegetation areas, but 

the used data has only limited geometric resolution. In 

[4], they present results of hyperspectral data analysis for 

urban areas based on ROSIS and DAIS data, also 

discussing the impact of spectral and geometric 

resolution. [5] integrate Digital Surface Model (DSM) 

information in order to improve the results of 

hyperspectral classification based on HYDICE data. In 

their research the DSM, derived from aerial imagery, is 

applied for the discrimination of roofs and ground 

surfaces. The materials may have a similar spectrum, but 

they can be discriminated based on the height 

information. [6] show material mapping techniques based 

on deterministic similarity measures for spectral 

matching to separate target from non-target pixels in 

urban areas.  

[7] is the closest related work to our approach. They use a 

normalized DSM and hyperspectral data taken by the 

airborne DAIS 7915 sensor. A similar approach of [8] is 

using HyMap data, high resolution orthophotos and a 

DSM – the latter both derived from HRSC-A data. Their 

focus is on fusing the high resolution datasets by a 

segment-based technique. 

Our approach differs from the above with respect to the 

input data, in particular the laser scanning data. The 

segmentation strategy used allows to incorporate 

geometric and spectral clues. For classification, we use 

eCognition, which allows a hierchical classification and 

introduction of knowledge by using the different 

information sources for different decisions within a fuzzy 

classification scheme. 

The given results are from a research project under way 

at Karlsruhe University in cooperation with the Chair of 

Water Chemistry (Engler-Bunte-Institute) and the 

Institute of Photogrammetry and Remote Sensing. The 

aim is to quantify pollution from sealed surfaces in urban 

environment, especially from the different kind of roof 

surfaces and their different materials. The toxic material, 

like the metallic surfaces, has a strong impact on the type 

and dimension of sewage plants. The question is 

discussed, whether the owner of a building, that produces 

pollution and the cost to remove it, should pay a tax. On 

the other hand, treatment of rain runoffs water would be 

easier and considerably cheaper in case of low pollution 

rates. The modelling of the dissolved harmful 

components is not a trivial matter. Experiments in the 

Labs of Water Chemistry show a function of rainfall 

characteristics, different for the respective material. First 

flush shows higher concentrations than the following run 

off. After all, the concentrations are in function of the 

time elapsed from the last rainfall event. 

 

The recent activities in the described field emerge last not 

least from the EU water framework directive, which 

require continuous monitoring of the status for surface 

and ground water. Table 1 gives an overview of common 

roof material and their contribution to pollution. 

 



Material Pollutant� 

Brick PAC 

Copper CU, PAC 

Aluminium  

Zinc ZN, PAC 

Roofing felt/Bitumen TOC, DOC 

Stone plates, gravel  

Slate  

Grass  

Table 1: Example of roof materials and their properties as 

pollutants 

 

The definition of classes must take into consideration that 

stone plates and gravel are always combined with 

bitumen, and aluminium and zinc may not be separated 

even from visual inspection (see chapter 4).  

 

 

3. PILOT AREA AND DATA 

The Campus of Karlsruhe University was taken for a 

pilot area. The nearly 200 years of age of this oldest 

German Technical University show large roof surfaces of 

different material. The buildings, where the roofs are all 

accessible for checking without difficulties, are 

concentrated in an area of approximately 1 km x 0,5 km. 

The Campus is very well suited as a training field for 

research activities. A photogrammetric CAD-Model is 

available for multipurpose use together with sets of roof 

material from local inspection (Figure 1).   

 

 
Figure 1:  The main campus of Karlsruhe University 

(approx. 1km x 0.5 km) 

CAD model generated from aerial photogrammetry 

 

The roof material of all buildings has been checked 

during the photogrammetric restitution by data from the 

University Administration and/or by local inspection. 

This yields nearly perfect ground truth. 

 

Table 2 resumes the hyperspectral data together with the 

laser scanning flight (more details see [12]). 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
�

 PAC = Polycyclic aromatic components, TOC = Total organic 

carbon, DOC = Dissolved organic carbon, Cu = copper, Zn = 

Zinc 

Sensor HyMap TopoSys II 

Flight HyEurope 

Campaign 

07/2003 

March, 2002 

Operation and 

Data 

preprocessing 

DLR (German 

Aerospace 

Centre) 

TopoSys 

Company 

Ravensburg 

Ground 

Resolution 

4 m x 4 m 

(1m x 1m 

resampling) 

1m x 1m 

Spectral Range 438 – 2483 nm 1560 nm (*) 

Spectral 

Resolution 

126 channels 1 channel 

Mode  First and last 

pulse 

Table 2: Airborne hyperspectral and laser scanning data 

(*) used wavelength 

 

 

4. METHODOLOGY 

The classification of roof surfaces in urban environment 

requires high-resolution data for both geometric and 

spectral properties as shown in the previous chapter. Due 

to the very complex urban scenario (see Fig. 2), the 

object-based eCognition approach was chosen. This is an 

explicit procedure, where knowledge is entered a priori (a 

so-called “knowledge based approach”). The more 

heuristic statistical methods, like a Maximum Likelihood 

Multispectral Classification is not applicable, because of 

restriction to spectral signatures in a complex large scale 

environment.  

 

 
Figure 2: Geometrical and spectral challenges in a large 

scale urbain domain (section of approx. 100m x 100m 

from the central campus). 

 

 

4.1 Image Segmentation 

Image segmentation means subdivision of the scene into 

homogeneous primitives which are useful for the 

subsequent classification. In our case we are looking for 

roofs and their material, i. e. planar surfaces of different 

slope and of height above the ground starting from 3 m 

approximately. 

 



The eCognition software, designed for Remote Sensing 

applications, does not allow to accept inclined  surfaces 

as homogeneous by its region growing algorithm. 

However, inclination is a very strong geometric property 

entered from laserscanning data. Therefore, by IPF an 

algorithm was developed (first by F. Quint and S. Landes, 

1996 [10] and refined by T. Vögtle and E. Steinle, 2000 

[11]), which allows the segmentation of inclined roofs. 

Figures 3a/b show the obtained improvement for roofs.  

 

 
Fig. 3a: Segmentation of homogeneous primitives by 

eCognition (same clipping as Fig. 2) 

 

 
Fig. 3b: Segmentation of homogeneous primitives by the 

IPF approach 

 

Fig. 3c: IPF approach followed by eCognition 

 

The smooth transition between the brick and the slate 

patch at the lower right  of Fig. 3 cannot be resolved by 

the geometric segmentation. Therefore, a subsequent 

eCognition algorithm had to be applied taking 2 spectral 

channels (red and infrared) in addition to the “geometric” 

ones from laserscanning.  

 

This procedure leads to the results shown in Fig. 3c. The 

roof surfaces are correctly separated. Consequently this 

2step-approach for segmentation is applied for the entire 

scene and offers an augmented functionality. 

 

 

4.2 Classification 

The definition of classes has to be done in relation to 

their contribution to the budget of pollution on the one 

hand side and to the available data in the feature space on 

the other. As mentioned before (chapter 2), stone plates, 

gravel and bitumen/roofing felt are assigned to one class 

“stonelike/bitumen”, because stone plates and gravel on 

roofs only occur in combination with bitumen underneath 

the surface, thus producing the respective toxic 

components. Moreover, zinc and aluminium are 

aggregated to one class after classification.  

 

The feature space offers geometric parameters from the 

laserscanning and spectral ones from the hyperspectral 

flight. 3 geometrical channels are applied (i. e. heights 

from first and last pulse together with slope) and 20 

spectral channels carefully selected out of the available 

126 Hymap channels. Figure 4 gives an overview of the 

spectra for the roof material under consideration. 

 



 
Figure 4: Spectra of roof surfaces (directly taken from the 

real HyMap data set) 

 

The eCognition fuzzy logic based classification 

procedure requires the a priori estimation of membership 

functions for each class. By this step knowledge about the 

classes with respect to the geometric and spectral features 

is modelled. This includes, besides obvious conclusions 

(e. g. steep increase of the brick spectral curve from 

channel 1 to 25, see Figure 4), more sophisticated 

relations are considered: Slope of the roof surfaces may 

serve as a class indicator. Flat roofs are always connected 

with stone plates/gravel/bitumen; in case of brick and 

slate an inclination is mandatory.  

 

 

5. RESULTS 

Tests have been done for different compositions of the 

input features for classification and reported by D. Lemp 

and U. Weidner (2005) [12]. In conclusion, refined 

segmentation and classification pays off and lead to better 

results compared to less rigorous approaches.  

 

 

5.1 Roof maps 

 
Figure 5: Classification result for the example of Figure 

2/3 (legend see Figure 4) 

 

Figure 5 shows the classification result for the small 

central campus section introduced in Figure 2. Visual 

inspection comparing Figure 2 and Figure 5 reveals a 

good quality of the result, taking in consideration the very 

complex building topography.  

 

The membership values in the classification procedure 

were determined by the fuzzy and (min), which showed a 

better quality than the fuzzy or (max). More details 

concerning the classification procedure are given in [9]. 

 

The approach was applied to the whole area of the 

University Campus (Figure 1) and adjacent areas. The 

complete result (73.659 m2) is displayed in [12]. With 

respect to a better readability, Figure 6 restricts the 

resulting roof map to the central part of the main campus. 

 

 
Figure 6: Final result: roof map of the Karlsruhe 

University (enlarged section approximately 0,8 km x 0,5 

km, legend see Figure 4). 

 

5.2 Quality Assessment 

Quality check of classification is a crucial step in image 

analysis. This is particularly true for the implicit methods, 

where knowledge is not modelled a priori. In case of 

knowledge-based explicit approaches like fuzzy logic in 

eCognition, the system itself offers internal quality 

measures. 

 

In this context the eCognition software takes the 

membership values as a “stability factor”. The values are 

computed for each object in the respective classes and 

present individual estimations of the reliability of the 

obtained results. 

 

 
Table 3: Mean membership values and their statistics for 

all objects retrieved for the fuzzy and (min) 

 



 
Figure 7: eCognition stability of classification for the area 

displayed in Fig. 6 

 

The statistics of Table 3 shows high membership values  

for all classes. However, visualisation of the individual 

results in Fig. 7 reveal that in some minor areas the 

stability is weak. This happens primarily due to the 

limited geometrical ground resolution of 4m x 4m for the 

HyMap system which is not fully acceptable for roof 

analysis. 

 

As mentioned earlier, ground truth from local inspection 

is available. Therefore, this reference may be compared 

to the obtained results from eCognition leading to 

absolute quality values. In Table 4 the comparison is 

given by a confusion matrix. The numbers confirm the 

results from the previous analysis (Table 3 and Figure 7), 

showing best quality for brick roofs (nearly 100% correct 

classification) and  the weakest for slate roofs. The 

overall correctness is 91,2%, i.e. 67.167 m2 out of 73.659 

m2 were correctly classified. 
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brick 12728 0 8 0 6 99.9% 

copper 0 1570 111 0 7 93% 

aluminum/zinc 0 106 14810 232 2169 85.5% 

slate 24 0 410 4490 634 81% 

stonelike/bitumen 76 99 732 356 33569 96.4% 

producer accuracy 99.2% 88.5% 92.2%  88.4% 92.3%  

Table 4: Confusion matrix comparing reference data 

(ground truth) to object-oriented classification results 

The numbers are in m2 

(*) Aluminum and Zinc is not seperated yet in reference 

data 

 

 

6. OUTLOOK 

New sensors like airborne hyperspectral and 

laserscanning lead to new applications, requiring new 

models and algorithms. The joint processing of  

hyperspectral and laserscanning means the fusion of  very 

different data types. Therefore, the object oriented 

eCognition approach is well suited in order to obtain 

satisfactory results: finally a budget of pollution for 

runoff water from roofs. 

 

Large scale applications in urban environments will show 

growing importance in future. The reasons are in the 

demographic development, exploding population and 

megacities with all their problems like pollution, traffic 

collapse or disasters. Roofs as pollutants represent a very 

small sector in this context; however, they may be 

regarded also as resources. This is, e.g., true for 

installation of photovoltaic mini power plants on roof 

surfaces. The necessary methodology to find appropriate 

locations would be very similar to what has been 

developed in the presented analysis. 
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